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Abstract

Large-amplitude free vibration analysis of simply supported thin isotropic skew plates has been presented. The large

deformation is imparted statically by subjecting the plate under uniform transverse pressure. The mathematical

formulation is based on the variational principle in which the displacement fields are assumed as a combination of

orthogonal polynomial or transcendental functions, each satisfying the corresponding boundary conditions of the plate.

The large-amplitude dynamic problem is addressed by solving the corresponding static problem first, and subsequently

with the resultant displacement field, the problem is formulated. The vibration frequencies are obtained from the solution

of a standard eigenvalue problem. Entire computational work is carried out in a normalized square domain obtained

through an appropriate domain mapping technique. Results of the reduced problem revealed excellent agreement with

other studies and a typical comparison of the actual problem is also carried out successfully. Results are furnished in

dimensionless amplitude–frequency plane, in the form of backbone curves and pictorial representations of some vibration

mode shapes are made.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Linear free vibration analysis of a structure is carried out to predict the inherent dynamic response of the
structure on which modern-day design practices are based. However, large-amplitude vibration frequencies of
a structure are expected to change significantly from its linear counterparts because of the fact that the
stiffness of a deformed structure changes appreciably due to the effect of geometric nonlinearity. This effect is
found to be more prominent in case of the structural elements under large static deformation. Predicting the
large-deformation free vibration response of structural elements is a challenging task even to the present-day
researchers. In the present paper, the study of the large deformation free vibration analysis of skew plates has
been presented. Skew plates have quite a good number of applications in civil, aerospace and other forms of
structures.

Prathap and Varadan [1] studied the large-amplitude free flexural vibrations of thin, elastic anisotropic skew
plates using the von Karman field equations. Naturally, the governing nonlinear dynamic equations are
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

a length of the plate
b oblique width of the plate
fdg vector of unknown coefficients
D flexural rigidity of the plate
E Young’s modulus of the plate material
ffg load vector
J Jacobian of the coordinate transforma-

tion
[kb] part of stiffness matrix coming from the

bending action
[km] part of stiffness matrix coming from the

membrane forces
[K] stiffness matrix
[M] mass matrix
nu number of functions for displacement

field u

nv number of functions for displacement
field v

nw number of functions for displacement
field w

p uniformly distributed transverse load
P concentrated transverse load
t thickness of the plate
u displacement along the x-direction

U strain energy
Ub strain energy due to flexural action
Um strain energy due to membrane action
v displacement along the y-direction
V work potential
w transverse displacement
w* dimensionless maximum transverse dis-

placement (¼ wmax/t)
ai set of functions defining approximate

displacement field u

bi set of functions defining approximate
displacement field v

gi set of temporal functions
Z normalized coordinates in the y-direction
y skew angle
l dimensionless frequency parameter
n Poisson’s ratio
x normalized coordinates in x-direction
r density of plate material
t time
fi set of functions defining approximate

displacement field w

o natural frequency
o1 fundamental linear frequency
onl nonlinear frequency
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derived in terms of stress function and lateral displacement and they obtained the solutions by the Galerkin
method on the basis of a one-term assumed vibration mode. Liew and Lam [2] studied the flexural vibration of
skew plates by the Rayleigh–Ritz method (RRM) using a set of admissible two-dimensional orthogonal plate
functions satisfying boundary conditions. They used the Gram–Schmidt orthogonalization procedure to
generate higher-order terms in the two-dimensional orthogonal plate functions. The natural vibrations of
thick and thin rhombic plates with clamped and simply supported edges have been analysed by McGee et al.
[3] using assemblages of nine-node Lagrangian isoparametric quadrilateral C0 continuous finite elements
based on a higher-order shear-deformable thick plate theory. Additional nodal displacement degrees of
freedom are derived by retaining higher-order powers of the thickness coordinate in the in-plane displacement
fields, which in turn allows for the proper representation of the transverse shear strains of thick plates. Singh
and Chakraverty [4] used RRM to determine the flexural vibration frequencies of skew plates and utilized the
Gram–Schmidt orthogonalization procedure to generate the admissible set of polynomial functions from the
prescribed start function.

Using the first-order shear deformation plate theory, Wang [5] presented a B-spline RRM for free vibration
analysis of skew fibre-reinforced composite laminates, which may have arbitrary lay-ups, admitting the
possibility of coupling between in-plane and out-of-plane behaviour and genera1 anisotropy. In this approach,
the displacement field consists of three mid-surface translational displacements u, v, and w and two through-
thickness shear strains instead of two rotations in order to avoid the shear locking phenomenon. The RRM
has been used by Singh and Saxena [6] to study the transverse vibrations of skew plates of variable thickness
with different combinations of boundary conditions at the four edges. In this paper, the two-dimensional
thickness variations are taken as the Cartesian product of linear variations along the two concurrent edges
of the plate. Žitňan [7] studied the transverse vibrations of rectangular and skew plates by the RRM using
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B-spline trial functions. Reddy and Palaninathan [8] have extended the use of a general high-precision
triangular plate bending finite element to the free vibration analysis of laminated skew plates by deriving the
consistent mass matrix in an explicit form. They imposed boundary conditions on the skew edges through the
transformed element matrices. Saadatpour et al. [9] considered a theoretical formulation for the dynamic
analysis of simply supported quadrilateral plates having intermediate line and point supports. They used
natural coordinates in conjunction with the Galerkin method to provide one single super-element in order to
represent the whole plate. Mizusawa and Kondo [10] used the spline element method to analyse the vibration
of isotropic, skew Mindlin plates of varying thickness.

Singha and Ganapathi [11] investigated large-amplitude free flexural vibration behaviours of thin laminated
composite skew plates using the finite element approach, considering the effect of shear deformation, in-plane
and rotary inertia. They used von Karman’s assumptions to introduce geometric nonlinearity. The nonlinear
governing equations are obtained by employing Lagrange’s equations of motion and are solved using the
direct iteration technique. A meshfree method based on the reproducing kernel particle approximate is
employed by Liew et al. [12] for the free vibration and buckling analyses of shear-deformable plates. In this
approach, the first-order Mindlin/Reissner plate theory is used, and the displacement shape functions are
constructed using the reproducing kernel approximation satisfying the consistency condition. An examination
of the accuracy and convergence behaviours of polynomial basis function differential quadrature and
harmonic basis function differential quadrature for free vibration analysis of variable-thickness thick skew
plates has been carried out by Malekzadeh and Karami [13], where the plate governing equations are based on
the first-order shear deformation theory including the effects of rotary inertia. They employed arbitrary
thickness variations, yielding a system of equations with nonlinear spatial-dependent coefficients. Zhou et al.
[14] studied the free vibration characteristics of skew thick plates with arbitrary boundary conditions based on
three dimensional, linear, and small strain elasticity theory. They derived the eigenvalue equation from the
energy functional of the plate by using the Ritz method and developed the trial functions of the displacement
components from a set of triplicate Chebyshev polynomial series multiplied by a boundary function chosen to
satisfy the essential geometric boundary conditions of the plate. Singh and Tanveer [15] carried out the
analysis by the p-type variational method and have reported some results for the linear dimensionless
frequency parameters for rhombic skew plates.

In the present work, a simulation model for large-deformation free vibration analysis of a thin isotropic
skew plate has been presented. The mathematical formulation is based on variational form of energy principle.
To predict the large-amplitude vibration frequency of the plate, first a static analysis is carried out and then
knowing the deformed shape, an eigenvalue problem is formulated corresponding to the system stiffness.
A good number of results has been presented, which will be of great help to the designers.

2. Mathematical formulation

A skew plate (a� b� t) with skew angle y is shown in Fig. 1. The mathematical formulation is based on the
assumption that the material of the plate is isotropic and homogeneous and obeys linear elastic stress–strain
relation. The thickness of the plate is considered to be sufficiently small so as to avoid the effect of shear
deformation. Also, the stress and strain measures are based on the original dimension of the plate.

2.1. Mapping of the physical domain into the computational domain

The physical domain of interest in the x–y coordinate system shown in Fig. 1 is mapped to the
computational domain in the x� Z coordinate system as shown in Fig. 2. In the computational domain, the
constant x and constant Z lines are selected at the Gauss points. The x–y coordinates of all the Gauss points in
the computational domain are calculated by suitable grid generation techniques.

2.2. Static analysis

It is well known that nonlinear vibration frequency is amplitude dependent and establishment of
the particular relationship is the primary objective of any large-amplitude vibration analysis. With increase
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Fig. 1. Skew plate in x–y plane.

Fig. 2. Gauss point locations for skew plate: (a) physical domain and (b) computational domain.
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in vibration amplitude, strain energy stored in the plate increases, thus changing its dynamic behaviour.
In the present work, analysis is carried out in two parts: first the problem corresponding to the trans-
verse loading is solved and subsequently the dynamic problem is taken up with the known displacement
field.

2.2.1. Variational form of equations

The variational principle states that

dðU þ V Þ ¼ 0, (1)

where Uð¼ Ub þUmÞ is the total strain energy, Ub the strain energy due to pure bending and Um the strain
energy due to stretching of its middle surface, and V the potential of the external forces. The expressions for
Ub and Um have been mentioned in an earlier study [16] for rectangular plates and their expressions for a skew
plate is indicated here once again.
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Ub is given by

Ub ¼
D
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where D ¼ Et3=ð12ð1� n2ÞÞ is the flexural rigidity of the plate, and u, v, and w are displacements along the
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For a plate loaded with uniform transverse pressure p and a concentrated load P, potential energy V is
given by

V ¼ �

Z b cos y

0

Z y tan yþa

y tan y
ðpwÞdxdy� Pwjx;y, (4)

where wjx;y is deflection of the concentrated load application point.

2.2.2. Approximate displacement field

The displacement fields w, u, and v are expressed by linear combinations of unknown parameters di as
follows:

wðx; ZÞ ¼
Xnw

i¼1

difiðx; ZÞ; uðx; ZÞ ¼
Xnwþnu

i¼nwþ1

diai�nw
ðx; ZÞ; vðx; ZÞ ¼

Xnwþnuþnv

i¼nwþnuþ1

dibi�nw�nu
ðx; ZÞ, (5)

where fðx; ZÞ, aðx; ZÞ, and bðx; ZÞ are sets of orthogonal functions and nw, nu, and nv are numbers of functions
for w, u, and v, respectively.

The start functions of these orthogonal sets are selected to satisfy the flexural and membrane boundary
conditions of the plate. To cater to the need of the numerical scheme, all the start functions are defined in the
computational domain. The basis functions for the definition of plate deflection w comes from the flexural
simply supported boundary condition. The start functions for u and v are selected to satisfy the zero-
displacement boundary conditions at the boundary edges. Although the present paper deals with simply
supported boundary condition, the result for any boundary condition may also be obtained by selecting the
appropriate flexural plate deflection function.

The higher-order functions are generated following a two-dimensional implementation of the Gram–
Schmidt scheme. In the conventional method of generating higher-order functions, first the higher-order one-
dimensional functions are generated from the corresponding start functions and then two-dimensional
functions are generated by ordered multiplication of the one-dimensional functions corresponding to two
orthogonal directions. But the present method is based on the functions generated by the two-dimensional
implementation of the Gram–Schmidt scheme. In this method, higher-order functions corresponding to a
particular orthogonal direction are first generated through the Gram–Schmidt scheme, for a fixed coordinate
value of the other orthogonal axis. Then each of these functions is treated as start functions to generate the
complete set of higher-order two-dimensional functions. The advantage of using this technique is that unlike
the earlier case, the basis functions can be of two variables, which are not separable in the individual spatial
coordinates.
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2.2.3. Governing system of equations

Using Eqs. (2)–(5) in Eq. (1), the governing equations are obtained in the following form:

½K�fdg ¼ ffg, (6)

where [K] ¼ [kb]+[km] is the total stiffness matrix, [kb] and [km] being the contribution from bending and
stretching action and {d} is the unknown coefficient vector. In the right-hand side of the equation, {f} is the
load vector and it is to be noted that the dimensions of all the matrices and vectors are ðnw þ nu þ nvÞ. Details
of the stiffness matrices and load vector are provided in the Appendix.

2.2.4. Solution of the static displacement field

The set of governing equations (Eq. (6)) is nonlinear in nature and solved by the direct substitution
technique using the successive relaxation scheme [17]. For each load step, the values of {d} are assumed to
evaluate the stiffness matrix. Using the stiffness matrix, based on assumed values, new values of {d} are
calculated by the matrix inversion technique from the expression {d} ¼ [K]�1{f}. Calculated values of {d} are
compared with their values in the previous iteration. If the difference comes below a predefined value of error
limit e, the convergence of deflection field is assumed, otherwise the values of {d} are modified with a
relaxation parameter and it is taken as the next approximation for the values of {d}. Once a solution is
obtained for a load, an increment is given on the load and iteration starts with the present solution. In the
present extrapolation technique, another assumed deflection field has also been extrapolated from the previous
solution set using the ratios of the unknown coefficients {d} for the preceding two load steps. Although this
technique has not been tried extensively, this can be utilized as a useful numerical tool for the solution of a
nonlinear set of equations, when convergence becomes difficult.

2.3. Dynamic analysis

The variational form of the dynamic problem is derived from Hamilton’s principle, which states that

d
Z t2

t1
Ldt

� �
¼ 0, (7)

where L ¼ T � ðU þ V Þ is called the Lagrangian and T, U, and V are the total kinetic energy, strain energy
and potential of the external forces, respectively.

The mathematical expressions of U and V have already been given in Eqs. (2) and (3), respectively, and the
kinetic energy T is expressed as

T ¼
1
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In the normalized plane, T is given by

T ¼
1

2
rt

Z 1

0

Z 1

0
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þ
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det JdxdZ.

2.3.1. Governing system of equations

The dynamic displacements wðx; Z; tÞ, uðx; Z; tÞ, and vðx; Z; tÞ are assumed to be separable in space and time
as shown below:

wðx; Z; tÞ ¼
Xnw

i¼1

difiðx; ZÞgiðtÞ,

uðx; Z; tÞ ¼
Xnwþnu

i¼nwþ1

diai�nw
ðx; ZÞgi�nw

ðtÞ,
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vðx; Z; tÞ ¼
Xnwþnuþnv

i¼nwþnuþ1

dibi�nw�nu
ðx; ZÞgi�nw�nu

ðtÞ. ð9Þ

Here, {d} is a new set of unknown parameters to be evaluated, which indicates the contribution of the
individual vibration modes for a particular vibration frequency. The space functions are completely known
from the earlier static analysis and the set of temporal functions is expressed by gi ¼ eiot, where o represents
the natural frequency of the system.

Using these dynamic displacement fields and putting Eqs. (2), (3), and (8) into Eq. (7), the governing
equation of the dynamic problem can be written in the form

�o2½M�fdg þ ½K�fdg ¼ 0, (10)

where [M] is the mass matrix of dimension ðnw þ nu þ nvÞ and its elements are as follows:

M11 0 0

0 M22 0

0 0 M33

2
64

3
75,

where

½M11� ¼ rt
Xnw

j¼1
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i¼1

Z 1
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fifj det JdxdZ,
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det JdxdZ,

½M33� ¼ rt
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Xnwþnuþnv

i¼nwþnuþ1

Z 1

0

Z 1

0

bi�nw�nu
bj�nw�nu

det JdxdZ:
Table 1

Validation of the results for the first five linear dimensionless frequency parameters for a rhombic plate with all edges simply supported

y (deg) Mode Present study Ref. [15]

15 1 20.889 20.73

2 48.213 48.11

3 56.192 55.84

4 79.159 78.79

5 105.039 103.82

30 1 25.065 24.69

2 52.629 52.56

3 72.136 71.24

4 83.960 83.39

5 124.104 122.02

45 1 35.680 34.24

2 66.266 66.11

3 100.518 99.54

4 109.139 106.10

5 141.399 140.08

60 1 66.84 60.96

2 104.954 104.51

3 148.710 146.51

4 196.152 195.30

5 214.749 203.60
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Fig. 3. Backbone curves for the SSSS skew plate for different skew angles with a/b ¼ 1: (a) y ¼ 151, (b) y ¼ 301, (c) y ¼ 451, (d) y ¼ 601,

and (e) y ¼ 751.
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Fig. 4. Backbone curves for the SSSS skew plate for different skew angles with a/b ¼ 2/3: (a) y ¼ 151, (b) y ¼ 301, (c) y ¼ 451, (d) y ¼ 601,

and (e) y ¼ 751.

D. Das et al. / Journal of Sound and Vibration 313 (2008) 246–267254



ARTICLE IN PRESS

Fig. 5. Backbone curves for the SSSS skew plate for different skew angles with a/b ¼ 1/2: (a) y ¼ 151, (b) y ¼ 301, (c) y ¼ 451, (d) y ¼ 601,

and (e) y ¼ 751.
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Eq. (10) can be transformed to a standard eigenvalue problem by suitable rearrangement, which is solved
numerically to calculate the natural frequencies using IMSL routines.
3. Results and discussions

The aim of this study is to investigate the effect of large deflection on the dynamic behaviour of skew plates
and present its variation with different skew angles and aspect ratios. The analysis is based on calculating the
static displacements of the plate and subsequently evaluating the eigenvalues of the corresponding dynamic
Fig. 6. Large-deflection dynamic behaviour for different types of loadings for the SSSS rhombic skew plate with y ¼ 301: (a) Mode 1,

(b) Mode 2, and (c) Mode 3.
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problem formulated through the known displacement field. The square roots of these eigenvalues represent
the free vibration frequencies of the skew plate at that deflected configuration. The displacement field
corresponding to each of the eigenvalues provides the amplitude of free vibration.

The present method is quite general in nature so that it can be applied for any classical boundary condition.
To keep the volume of the paper within reasonable limit, detailed results have only been presented for skew
plates with all along simply supported boundaries (SSSS) where the static deflection in the plate is effected by
uniform transverse pressure. However, some results for other type of loadings and boundary conditions have
also been furnished to establish the generality and robustness of the present method. With regard to
membrane effect, the edges of the plate are modeled as immovable by imposing zero in-plane displacement
boundary conditions. The results are generated using the following material and geometric parameter values,
E ¼ 210GPa, n ¼ 1/3, a ¼ 1.0m, r ¼ 7850 kgm�3, and t ¼ 0.01m.

3.1. Validation

The linear dimensionless frequency parameter in line with an earlier research work [16] is defined as
l ¼ oa2

ffiffiffiffiffiffiffiffiffiffiffi
rt=D

p
. In order to validate the present formulation, the first five linear dimensionless frequency
Fig. 7. Backbone curves for a rhombic skew plate with y ¼ 301 having different boundary conditions: (a) CSSS, (b) CCSS, (c) CSCS, and

(d) CCCS.
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parameters for a rhombic plate with all edges simply supported for different skew angles have been compared
with the corresponding results presented in Ref. [15] and it has been tabulated in Table 1. This table shows
excellent agreement, thus establishing the validation of the present method. It should be mentioned that
the results for calculating l’s as shown in Table 1 are generated by considering different number of functions
for different skew angles. For y ¼ 151, 301, 451, and 601, numbers of functions for each plate displacements
(w, u and v) are taken as 25(5� 5), 36(6� 6), 49(7� 7), and 64(8� 8), respectively, where numbers in the
parentheses provide a break up for the order of the functions corresponding to two orthogonal directions. It is
evident that the convergence is dependent on the number of functions for different skew angles.

3.2. Large-deflection dynamic behaviour of the SSSS skew plate under uniform pressure

The large-amplitude dynamic behaviour of a skew plate is shown graphically as the backbone curves for
different skew angles in Figs. 3(a–e), 4(a–e), and 5(a–e) for different fixed values of aspect ratios (a/b).
These backbone curves have been shown for the first six mode shapes in the dimensionless amplitude–
frequency plane. The ratio of the maximum plate deflection to plate thickness is taken as the dimensionless
amplitude w� ( ¼ wmax/t) while the dimensionless frequency (onl/o1) is obtained by normalizing the nonlinear
frequency (on1) with the corresponding fundamental linear frequency (o1). In Figs. 3–5, the aspect ratios are
Fig. 8. Mode shape plots for an SSSS skew plate with y ¼ 301 and a/b ¼ 1 (corresponding to backbone curves in Fig. 3(b)): (a) Mode 1,

(b) Mode 2, (c) Mode 3, (d) Mode 4, (e) Mode 5, and (f) Mode 6.
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Fig. 8. (Continued)
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taken as 1, 2/3, and 1/2, respectively, and corresponding to each of these aspect ratios, the variation in the
dynamic behaviour of skew plates is shown for y ¼ 151, 301, 451, 601, and 751. It must be noted that
the number of functions for each computation is selected suitably for different skew angles. This is done to
reduce the computational time because it increases exponentially with the number of functions. As mentioned
earlier, obtaining convergence is much more problematic for larger skew angles and hence results for these
cases are generated up to a lower value of w�.

The general trend that can be obtained from any of the backbone curves is that the free vibration frequency
increases as the deflection of the skew plate increases as can be seen from any of the plots of Figs. 3–5. The
specific reason for this trend can be attributed to the fact that the plate stiffens with increase in deflection due
to the effect of geometric nonlinearity, resulting in the increase in nonlinear frequency. This effect is
apparently more pronounced for skew angles up to 451. For skew angles 601 and above, the effect seems
insignificant due to the difference in the dimensionless amplitude scale. This trend is consistent irrespective of
the aspect ratios.

The phenomenon of mode switching has been observed for some specific geometry of skew plates. This
phenomenon has been observed for y ¼ 301, a/b ¼ 1; y ¼ 151, a/b ¼ 2/3, and y ¼ 301, a/b ¼ 1/2 as can be seen
from Figs. 3(b), 4(a), and 5(b), respectively. This is appropriately supported by mode shape plots presented
in Section 3. It can be further seen from the figures that for a/b ¼ 1 and a/b ¼ 1/2, mode switching

occurs between o5 and o6 (Figs. 3(b) and 5(b), respectively), whereas for a/b ¼ 2/3, it occurs between o3 and
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Fig. 8. (Continued)
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o4 (Fig. 4(a)). It can be easily understood that the occurrence of mode switching is entirely system dependent
and the modes between which switching occurs are also dependent on the corresponding system.

3.3. Results for other types of loadings and boundary conditions

In Section 3.2, results have been presented for uniform transverse pressure for SSSS skew plates. The
present formulation is robust enough to take into account any type of loadings, be it uniform transverse
pressure, or concentrated transverse loads at arbitrary locations or a combination of both to name a few.
The effect of some different types of loadings on dynamic behaviour of skew plate has also been investigated
in the present paper, which are (i) concentrated load at midpoint (0.5, 0.5), (ii) concentrated load at point
(0.25, 0.25), and (iii) a combination of uniform transverse pressure and concentrated load at midpoint, termed
as mixed load in the legends of the plots. The large-deflection dynamic behaviour for the SSSS rhombic skew
plate (a/b ¼ 1) with y ¼ 301 for these three new types of loading along with the earlier one has been presented
in the form of backbone curves in Figs. 6(a–c) for the first three vibration modes, respectively. The frequency
of vibration increases monotonically with amplitude for all four types of loadings, but for uniform transverse
pressure this increase is maximum. The combined concentrated and uniform pressure loading comes next in
this respect and the effect of concentrated load alone on that particular behaviour is the least. The effect of
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location of concentrated transverse load on the dynamic behaviour of skew plate is also prominent from
Figs. 6(a–c) but further study is required to arrive at certain conclusions in this regard.

In order to check the robustness of the present formulation in terms of boundary conditions, the same is
used to consider the dynamic behaviour of skew plates having mixed boundary conditions loaded with
uniformly distributed transverse pressure. For this purpose, backbone curves for different combinations of
clamped and simply supported edges (CSSS, CCSS, CSCS, and CCCS) for rhombic skew plates with y ¼ 301
have been presented in Figs. 7(a–d), respectively, for the first six vibration modes. It should be noted that the
letter ‘C’ denotes clamped boundary and the nomenclature of the boundary condition starts from the skew
edge passing through the origin and proceed in the counter-clockwise direction. The dynamic behaviour as can
be viewed from Fig. 7 remains same as that mentioned for the SSSS skew plate in Section 3.2. The mode
switching phenomenon as observed in Figs. 7(a) and (b) is apparent and the fact has been confirmed by
studying the backbone curves at higher magnification and investigating the corresponding mode shape plots.

3.4. Mode shape plots

Mode shape plots for the first six vibration modes of SSSS skew plates under uniform transverse pressure
have been presented for two specific geometries: y ¼ 301, a/b ¼ 1, and y ¼ 151, a/b ¼ 2/3 in Figs. 8(a–f) and
Fig. 9. Mode shape plots for an SSSS skew plate with y ¼ 151 and a/b ¼ 2/3 (corresponding to backbone curves in Fig. 4(a)): (a) Mode 1,

(b) Mode 2, (c) Mode 3, (d) Mode 4, (e) Mode 5, and (f) Mode 6.
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9(a–f), respectively. For each mode of vibration, two mode shape plots corresponding to linear and nonlinear
frequencies are given. The mode shape plots for nonlinear frequencies are given corresponding to the
maximum deflected position up to which results have been generated. Also, it must be mentioned that the
mode shape plots are presented for those geometries for which mode switching occurs, in order to visualize
the phenomenon. In each plot, the surface plot and its corresponding contour plot for the vibrating skew plate
have been presented. It is also to be noted that the amplitude of vibration for all the surface plots is scaled by
the difference between the extremities of the displacement amplitude.

Although, it is apparent that the surface plots for a particular mode shape for linear and nonlinear
frequencies for a particular aspect ratio and skew angle are identical in nature, a microlevel study reveals that
their amplitude of vibration is different from each other. It is due to the fact that the amplitude of vibration
depends on the corresponding static deflection of the skew plate. The microlevel observations are not
presented here to maintain brevity.

The vibration mode shapes are also a function of the nature of loading, and to highlight the effect, sectional
views of the mode shapes at large-amplitude have been presented in Figs. 10(a–c). These three figures
correspond to the first three vibration modes of an SSSS rhombic skew plate with y ¼ 301 for different types of
loadings as considered earlier in Fig. 6. Two sections, one parallel to the x-axis and the other parallel to the
skew edge, have been taken for each vibration mode. The section planes are so selected as to avoid the nodal
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points and their locations have been indicated in the legends of the figures. It must be noted that Figs. 10(a–c)
are captured at w� ¼ 0:8. Fig. 10 clearly shows that vibration mode shapes depend on the nature of loading.
Concentrated load at (0.25, 0.25) produces appreciable difference in its large-amplitude mode shapes from
that obtained by the three other types of loadings because of its off-centred nature compared to the other
three.

4. Conclusions

In this paper, the simulation model for large-amplitude free vibration analysis of thin isotropic skew
plates subjected to uniform static pressure with all along simply supported flexural boundary conditions
and immovable in-plane boundary conditions has been presented. The mathematical formulation is based
on the variational form of the total potential energy of the system. The results are validated successfully with
the available results. The dynamic behaviour of skew plates has been presented in the form of backbone
curves in a dimensionless frequency–amplitude plane. The effect of different types of loadings and
combination of clamped and simply supported boundary conditions have also been investigated. The mode
shape plots are presented to visually differentiate between the linear and nonlinear dynamic behaviour of skew
plates.



ARTICLE IN PRESS

Fig. 10. Sectional views of large-amplitude vibration mode shapes for an SSSS rhombic skew plate with y ¼ 301: (a) Mode 1, (b) Mode 2,

and (c) Mode 3.
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Appendix. Details of matrix elements

Total stiffness matrix [K] ¼ [kb]+[km].
The form of [kb] is given below:

½kb� ¼

kb
11 kb

12 kb
13

kb
21 kb

22 kb
23

kb
31 kb

32 kb
33

2
64

3
75,

where

½kb
11� ¼ D

Xnw

j¼1

Xnw

i¼1

Z 1

0

Z 1

0

q2fi

qx2

� �
q2fj

qx2

 !
þ

q2fi

qy2

� �
q2fj

qy2

 !
þ

q2fi

qy2

� �
q2fj

qx2

 !
þ

q2fi

qx2

� �
q2fj

qy2

 !( )"

� ð1� nÞ
q2fi

qy2

� �
q2fj

qx2

 !
þ

q2fi

qx2

� �
q2fj

qy2

 !
� 2

q2fi

qx qy

� �
q2fj

qx qy

 !( )#
det JdxdZ

and ½kb
12� ¼ ½k

b
13� ¼ ½k

b
21� ¼ ½k

b
22� ¼ ½k

b
23� ¼ ½k

b
31� ¼ ½k

b
32� ¼ ½k

b
33� ¼ 0.

The form of ½km� is

½km� ¼

km
11 km

12 km
13

km
21 km

22 km
23

km
31 km

32 km
33

2
64

3
75,

where

½km
11� ¼

Et

2ð1� n2Þ

Xnw

j¼1

Xnw

i¼1

Z 1

0

Z 1

0

Xnw

i¼1

di

qfi

qx

 !2
qfi

qx

qfj

qx
þ

Xnw

i¼1

di

qfi

qy

 !2
qfi

qy

qfj

qy

2
4

þ
Xnw

i¼1

di

qfi

qx

 ! Xnw

i¼1

di

qfi

qy

 !
qfi

qx

qfj

qy
þ

qfi

qy

qfj

qx

� �
þ ð1� nÞ

Xnwþnu

i¼nwþ1

di

qai�nw

qy

 !
qfi

qx

qfj

qy

þð1� nÞ
Xnwþnuþnv

i¼nwþnuþ1

di

qbi�nw�nu

qx

 !
qfi

qx

qfj

qy

3
5 det JdxdZ,

½km
12� ¼

Et

2ð1� n2Þ

Xnw

j¼1

Xnwþnu

i¼nwþ1

Z 1

0

Z 1

0

2
Xnw

i¼1

di

qfi

qx

 !
qai�nw

qx

qfj

qx
þ

"
2n

Xnw

i¼1

di

qfi

qy

 !
qai�nw

qx

qfj

qy

þ ð1� nÞ
Xnw

i¼1

di

qfi

qy

 !
qai�nw

qy

qfj

qx

#
det JdxdZ,

½km
13� ¼

Et

2ð1� n2Þ

Xnw

j¼1

Xnwþnuþnv

i¼nwþnuþ1

Z 1

0

Z 1

0

2
Xnw

i¼1

di
qfi

qy

 !
qbi�nw�nu

qy

qfj

qy
þ

"
2n

Xnw

i¼1

di
qfi

qx

 !
qbi�nw�nu

qy

qfj

qx

þ ð1� nÞ
Xnw

i¼1

di

qfi

qy

 !
qbi�nw�nu

qx

qfj

qx

#
det JdxdZ,
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½km
21� ¼

Et

2ð1� n2Þ

Xnwþnu

j¼nwþ1

Xnw

i¼1

Z 1

0

Z 1

0

2
Xnw

i¼1

di

qfi

qx

 !
qfi

qx

qaj�nw

qx
þ

"
n
Xnw

i¼1

di

qfi

qy

 !
qfi

qy

qaj�nw

qx

þ ð1� nÞ
Xnw

i¼1

di

qfi

qx

 !
qfi

qy

qaj�nw

qy

#
det JdxdZ,

½km
22� ¼

Et

2ð1� n2Þ

Xnwþnu

j¼nwþ1

Xnwþnu

i¼nwþ1

Z 1

0

Z 1

0

2
qai�nw

qx

qaj�nw

qx
þ ð1� nÞ

qai�nw

qy

qaj�nw

qy

� �
det Jdx dZ,

½km
23� ¼

Et

2ð1� n2Þ

Xnwþnu

j¼nwþ1

Xnwþnuþnv

i¼nwþnuþ1

Z 1

0

Z 1

0

2n
qbi�nw�nu

qy

qaj�nw

qx

�
þð1� nÞ

qbi�nw�nu

qx

qaj�nw

qy

�
det JdxdZ.

½km
31� ¼

Et

2ð1� n2Þ

Xnwþnuþnv

j¼nwþnuþ1

Xnw

i¼1

Z 1

0

Z 1

0

2
Xnw

i¼1

di

qfi

qy

 !
qfi

qy

qbj�nw�nu

qy
þ n

Xnw

i¼1

di

qfi

qx

 !
qfi

qx

qbj�nw�nu

qy

"

þð1� nÞ
Xnw

i¼1

di
qfi

qx

 !
qfi

qy

qbj�nw�nu

qx

#
det JdxdZ,

½km
32� ¼

Et

2ð1� n2Þ

Xnwþnuþnv

j¼nwþnuþ1

Xnwþnu

i¼nwþ1

Z 1

0

Z 1

0

2n
qai�nw

qx

qbj�nw�nu

qy
þ ð1� nÞ

qai�nw

qy

qbj�nw�nu

qx

� �
det JdxdZ,

½km
33� ¼

Et

2ð1� n2Þ

Xnwþnuþnv

j¼nwþnuþ1

Xnwþnuþnv

i¼nwþnuþ1

Z 1

0

Z 1

0

2
qbi�nw�nu

qy

qbj�nw�nu

qy
þ ð1� nÞ

qbi�nw�nu

qx
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qx

� �
det Jdx dZ:

The load vector {f} is of the form ½f11 f12 f13�
T,where

ff11g ¼ p
Xnw

j¼1

Z 1

0

Z 1

0

fj det Jdx dZþ Pfjjx;Z

and ff12g ¼ ff13g ¼ 0, as there is no contribution of in-plane loading.
Here, J is the Jacobian of the transformation from the x� y plane to the x� Z plane given by

J ¼

qx

qx

� �
qy

qx

� �
qx

qZ

� �
qy

qZ

� �
2
6664

3
7775.

The details of the Jacobian are available in Ref. [18].
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